Estimating Data Stream Quality for Object-Detection Applications

نویسندگان

  • Anish Das Sarma
  • Shawn R. Jeffery
  • Michael J. Franklin
  • Jennifer Widom
چکیده

Object-detection applications rely on streams of data gathered from sensors, RFID readers, and image recognition systems, among others. These raw data streams tend to be noisy, including both false positives (erroneous readings) and false negatives (missed readings). Techniques exist for general-purpose cleaning of these types of data streams, based on temporal and/or spatial correlations, as well as properties of the physical world. Cleaning is effective at improving the quality of the data, however no cleaning procedures can eliminate all errors. In this paper we identify and address the problem of quality estimation as object-detection data streams are cleaned. We provide techniques for estimating both confidence and coverage as streams are processed by cleaning modules. Detailed experimental results based on an RFID application demonstrate the accuracy and effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Algorithms for Mining Data Streams

Data streams are ordered sets of values that are fast, continuous, mutable, and potentially unbounded. Examples of data streams include the pervasive time series which span domains such as finance, medicine, and transportation. Mining data streams require approaches that are efficient, adaptive, and scalable. For several stream mining tasks, knowledge of the data’s probability density function ...

متن کامل

Survey on Outlier Detection in Data Stream

Data mining provides a way for finding hidden and useful knowledge from the large amount of data .usually we find any information by finding normal trends or distribution of data .But sometimes rare event or data object may provide information which is very interesting to us .Outlier detection is one of the task of data mining .It finds abnormal data point or sequence hidden in the dataset .Dat...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005